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| will first introduce the background of the VAE and the problem we want to solve. And then | will introduce our model, von
mises fisher VAE and its comparison and improvement over the original Gaussian VAE. Then followed by the experimental

findings.



VAE x NLP

e Unsupervised Latent Variable Model
¢ Factorization & Decoupling
e Style Transfer

e Representations in Latent Spaces
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a continuous space, Bowman et al., 2016

Recent advances in variational inference and learning enable the incorporation of distributed latent representations of the
whole sentence or the document.

The intuition of this unsupervised latent variable model is that to model the holistic properties of the whole sequences such as
style, topic, and high-level syntactic features. Besides, this approach of factorization allows us to decouple the semantics,
syntax, sentiment, topic and many other aspects of the texts to be encoded, which can be used in style transfer or domain
transfer for text generation.

VAE learns codes not as single points, but as soft ellipsoidal regions in latent space, forcing the codes to fill the space rather
than memorizing the training data as isolated codes. Hence, the learned representations are more diverse and well-formed.
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Generating sentences from a continuous space, Bowman et al., 2016

decoding from points between two sentence encodings

Sentences produced by greedily decoding from points between two sentence encodings with a conventional autoencoder.
The intermediate sentences are not plausible English



l|deal Latent Spaces i

Generating sentences from a continuous space, Bowman et al., 2016

decoding from points between two sentence encodings

Sentences produced by greedily decoding from points between two sentence encodings with a conventional autoencoder.
The intermediate sentences are not plausible English



Ideal Latent Spaces i

o i went to the store to buy some groceries .
1 store to buy some groceries .

1 were to buy any groceries .

horses are to buy any groceries .

horses are to buy any animal .

horses the favorite any animal .

horses the favorite favorite animal .

horses are my favorite animal .

“ i want to talk to you . ”

. . “ want to be with you . ”

COmpar|SOn . “% do n’t want to be with you . ”

. 1 do n’t want to be with you .
deCOdlng from she did n’t want to be with him .

: he was silent for a long moment .
pOIntS between he was silent for a moment .
it was quiet for a moment .

tWO Sentence it was dark and cold .

. there was a pause .
enCOdlngS it was my turn .

Generating sentences from a continuous space, Bowman et al., 2016

decoding from points between two sentence encodings

Sentences produced by greedily decoding from points between two sentence encodings with a conventional autoencoder.
The intermediate sentences are not plausible English
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The place was great The place was great

As you see in the figure, the representations learned in Gaussian VAE is more or less random noise and doesn’t help the
downstream task at all.

The Neural Variational RNN (NVRNN) language model based on a Gaussian prior (left) and a vMF prior (right). The encoder
model first computes the parameters for the variational approximation q¢(zlx) (see dotted box); we then sample z and
generate the word sequence x given z. We show samples from N (0, ) and vMF(-,k = 100); the latter samples lie on the
surface of the unit sphere. While k can be predicted from the encoder network, we find experimentally that fixing it leads to
more stable optimization and better performance.

And we name the issue with KL collapse
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(a) Gaussian

Visualization of optimization of how q varies over time for a single example during learning. In the
Gaussian case, the KL term tends to pull the model towards the prior (moving from y, o to y 0, o0 ), whereas in the vMF
case there is no such pressure towards a single distribution
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(a) Gaussian e Directional Distribution:
von Mises-Fisher (VMF)

Visualization of optimization of how q varies over time for a single example during learning. In the

Gaussian case, the KL term tends to pull the model towards the prior (moving from y, o to y 0, o0 ), whereas in the vMF
case there is no such pressure towards a single distribution
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(a) Gaussian (b) VMF ¢ Directional Distribution:
von Mises-Fisher (VMF)

Visualization of optimization of how q varies over time for a single example during learning. In the

Gaussian case, the KL term tends to pull the model towards the prior (moving from y, o to y 0, o0 ), whereas in the vMF
case there is no such pressure towards a single distribution
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ELBO

It’s time to dive into the math behind the VAEs.

The variational autoencoder is a generative model that is based on a regularized version of the standard autoencoder. the

vae uses an objective which encourages the model to keep its posterior distributions
close to a prior p(z). this objective is a valid lower bound on the true log likelihood of the data.

The first term of ELBO is the KL divergence of the approximate posterior from prior and the second term is an expected
reconstruction error.
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We fix and mannually choose the kappa in the vMF model because it’s hard to learn the kappa in an end-to-end fashion and
it’s actually pretty easy to find a reasonable kappa value.
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PTB Yelp
Model Standard Inputless Standard Inputless
NLL PPL NLL PPL NLL PPL NLL PPL

RNNLM (2016) | 100(=) 116  135(=)  >600 - - - -
G-VAE (2016) | 101(2) 119  125(15) 380 - - - -

RNNLM (Ours) | 100(-) 114  134(=) 596 | 199(=) 55 300(-) 432
G-VAE (Ours) 99 (4.4) 109  125(6.3) 379 | 199(0.5) 55 274(13.4) 256
VMF-VAE (Ours) | 96(5.7) 98  117(18.6) 262 | 198(6.4) 54 242(48.5) 134

Model | Dim | 20NG | RCV1

e RNN Language Model ¢ Document Model — marnoisy | 30| 217 | 72
e PTB * Reuters Corpus c-nvomeote) | o0 | 836 | 383
25 | 793 | 558

* Yelp * 20 News Group oy 0wy | 30 | 830 | 229
200 | 851 | 609
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0.0 0.2 0.4 0.6 v-VAE ‘ 0.77 0.57
Chance of Swap N
N Transferability & Overlap
Sensitive to Word Order

Average cosine similarity when trying to reconstruct the latent code p from the bag of words and vice versa. In vMF, the latent
code contains more information

beyond the bag of words, as shown by the lower cosine similarity when predicting BoW — p (0.57). When the latent code is
learned in a model conditioned on the bag of words (right column), it predicts the bag of words much less well, indicating that
the model successfully learns orthogonal information.
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Original Gaussian VAE is very tricky to tune.

What about the kappa in our model?

Perplexity of v-VAE in different settings with different k values when the latent dimension is 50.

Darker colors correspond to perplexity values closer to the best observed for that setting. For each task, we see that there is
a range of K values that work well, and these transfer between comparable tasks
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¢ Directional distribution to be discovered
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Takehome S

¢ Original Gaussian VAE is tricky to wake it up
* vMF is a ready-to-go and elegant solution
¢ Directional distribution to be discovered
e VAE (probably) helps in low resource / small data / ...
¢ | ess data-hungry & more interoperability
e vVMF VAE induces meaningful representations
* Nature of VAE models or vMF specific effects?




Release R
e arXiv: https://arxiv.org/abs/1808.10805

® Code & Data: https://github.com/jiacheng-xu/vmf_vae_nl
e Contact: Jiacheng Xu (jcxu@utexas.edu)
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