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How to interpret complicated 
sequential decisions?
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Input Article 
Speaking at a rally for Tory candidate Zac 
Goldsmith, the prime minister warned 
about the dangers of a Labour victory for 
the capital's economy. Mr Goldsmith said 
his Labour rival  […]

BART

Prefix 
David Cameron 

David Cameron has …

Predicted Summary

For each time step, we provide 
input and prefix, and the model 
predicts the next token.

BART ?Empty or a subset of tokens

Always provided 
in all settings!
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Input Article 
Speaking at a rally for Tory candidate Zac Goldsmith, the prime minister warned about the 
dangers of a Labour victory for the capital's economy. Mr Goldsmith said his Labour rival  […]

forBART
Prefix 
David Cameron has 
urged Londoners to vote 
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Input Article 
Speaking at a rally for Tory candidate Zac Goldsmith, the prime minister warned about the 
dangers of a Labour victory for the capital's economy. Mr Goldsmith said his Labour rival  […]

forBART
Prefix 
David Cameron has 
urged Londoners to vote 

Human: Why does the model say 
“for”?
Model: I am confident! Do my ablated 
versions agree with me?

Model

Model 

w/o Input Article p( for |        ,        , prefix) = 0.95

p( for |        ,        , prefix) = 0.96
Agree!
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=
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Frequency: ~70%

Ablated models are 
distant from full model;

Input is needed.

Context

Distance function 

d(p, q) =
|V|

∑
i

|pi − qi |

d( , )

built in 1993
by James
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Fine-tuning a LM on 
training data causes it 
to work less well.


Example

Gail Scott was desperate to 
emulate Kylie __?__

   p(Jenner) = 0.90


  p(Minogue) = 0.80


  p(Jenner) = 0.99

Pre-Training bias

Frequency: ~2%

Fine-tuned decoder-only 
model without input is a 
close match but the pre-
trained LM is not.


Example

In our series of letters from African 
journalists, […]

0.5% of ref summaries in XSum

Fine-Tuning bias

FT

WARNING
4% of CNN/DM test examples 
exist in pre-training corpus!

LM has likely memorized certain 
articles and their summaries.
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Input Article 
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Find the context which 
actually matters!


Methods: gradient, 
occlusion, etc.
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Input Article 
Speaking at a rally for Tory candidate Zac Goldsmith, the prime minister warned about the 
dangers of a Labour victory for the capital's economy. Mr Goldsmith said his Labour rival  […]

CameronBARTPrefix 
David

Human: Why does the model say “Cameron”?

Human: So what exactly do you look at?

Model: Ablated version disagrees  Input matters.→

… the prime minister warned … David

Cameron

Encoder Decoder

BART



 Attribution

Challenge


• hard to compare highlights


• inconsistency among different 
attribution methods


What we want 

an evaluation protocol for attributions
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Integrated Gradient

Attention
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Assign score for each token 
according to attribution

Does the selected set 
of tokens help recover 
the prediction?

Sort them according to the 
score and select top-k

Rank Token Score
1 prime 0.36
2 minister 0.21
3 warned 0.17
… … …

+             +  David

0.97

0.96

0.08

prime

prime minister

he talked to

Input Prefix p(Cameron)

… the prime minister warned … David

Cameron

Encoder Decoder

BART



Conclusion

Why do we do ablation before attribution?


• It identifies generation modes and allow us to deploy different 
tools on each mode.


Can you extend the framework to other NLG tasks?


• Yes!


How effective and accurate are attribution methods?


• Fine for many cases, but still a long way to go.
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